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Si en moyenne les d6placements mesur~s et calcul6s 
sont du m6me ordre de grandeur, par contre les valeurs 
relatives du d6sordre des atomes de m&al et de carbone 
sont invers6es. Cela est sans doute 1i6 au fait que la 
proportion de d~fauts dans ThC0,77 est trop ~lev~e pour 
que leur interaction puisse &re n6glig6e; il faudrait de 
plus tenir compte dans le calcul de la variation des 
constantes de forces avec la composition. 

Enfin, il est int6ressant de mentionner les r6sultats 
d'exp6riences similaires par diffraction de n e u t r o n s -  
6tude de spectres complets - par Karimov, Ern, 
Chidrov & Fa'izoullaiev (1977), ou de rayons X - 6tude 
d'une seule raie de diffraction - par Timofeeva & 
Klochkov (1974), fi 300 K sur des carbures de m&aux 
de transition. En particulier, les valeurs des amplitudes 
de d6placements statiques moyenn~es sur les deux 
types d'atomes donn(~es par ces auteurs pour le 
compos6 ZrC0. s sont respectivement 2 et 1,4%, valeurs 
16g6rement sup6rieures au d6sordre trouv6 dans 
ThC0,77. 

Les auteurs tiennent fi adresser leurs remerciements 
/l P. Wolfers pour son programme d'int6gration des 
raies de diffraction de neutrons et fi L.. Zuppiroli pour 
ses conseils lors de rajustement des courbes. Nous 
remercions particuli6rement D. Lesueur pour ses 
commentaires judicieux. 
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Abstract 

Some problems of the paracrystal model of diffraction 
from distorted lattices are discussed. The relationship 
between paracrystals and crystal growth-disorder 
models is established and the latter are used to generate 
examples of distorted lattices having many of the 
properties envisaged for paracrystals without some of 
the drawbacks. 

1. Introduction 

The concept of the 'paracrystal '  was introduced by 
Hosemann and co-workers and extensively developed 

0567-7394/80/060921-09501.00 

by them over a number of years prior to the publication 
of a book (Hosemann & Bagchi, 1962) containing a 
summary of the work. Since that time the paracrystal 
model has been widely used as a theoretical model for 
describing the diffraction properties of distorted lattices. 
Because of its success in describing observed diffraction 
effects qualitatively or even semi-quantitatively the 
mathematical basis of the model went unquestioned for 
many years until Perrett & Ruland (1971)discovered 
that the 'ideal paracrystar model predicted density 
fluctuations dependent on the size of the crystal, 
contrary to experimental experience with high 
polymers. This inadequacy has been removed in 
practice by use of the so-called a* law (Hosemann, 
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922 PARACRYSTALS AND GROWTH-DISORDER MODELS 

1975), which limits the size of paracrystalline grains so 
that fluctuations never get too large. Nevertheless, 
BrS.mer (1975) and Br/imer & Ruland (1976) have 
further criticized the mathematical basis of the model. 

The most popular form of the model is the 'ideal 
paracrystal'. This is constructed from two intersecting 
one-dimensional (1D) chains of lattice points, each 
chain being a I D paracrystal in which successive 
vectors vary in length and direction independently of 
previous vectors. The two-dimensional (2D) model is 
then constructed by completing parallelograms from 
primary vectors in the two chains. This model has the 
advantage that the diffraction properties are easily 
calculated but has the disadvantage that the variance of 
the length of vectors between successively distant 
neighbours increases without bound. As a result the 
model gives an unsatisfactory description of small-angle 
scattering properties. More general models of para- 
crystals described by Hosemann & Bagchi (1962), 
while perhaps being more realistic than the 'ideal 
paracrystal', do not allow simple calculation of their 
diffraction properties and moreover are not easily 
constructed. 

The paracrystal model is clearly an example of 
models of spatially interacting random variables and as 
such was developed at a time when little was known in 
this very difficult and complex field. While many 
advances have been made in this area in recent years 
with the work of Bartlett (1967), Besag (1974), 
Dobrushin (1968), Moussouri (1974), Spitzer (1971), 
Whittle (1954) and others it remains imperfectly 
understood and few explicit results are available still. 
Because of this, any model which is reasonably 
tractable is of interest even though it may have 
properties different from the most general models. One 
such model has been studied extensively in recent years 
by the present authors. This is a model involving only 
binary variables which has been used to describe the 
way in which substitutional disorder may be introduced 
into crystals at growth (Welberry & Galbraith, 1973; 
Welberry, 1977; Miller & Welberry, 1979). While this 
growth-disorder model does not represent the most 
general form for disordered binary lattices it has yielded 
a number of explicit solutions, is easily simulated and 
moreover still allows a considerable diversity of the 
statistical properties of the lattice. 

We have been struck for some time by the similarity 
of the way in which growth-disorder models are 
constructed and the methods used by Hosemann and 
co-workers for attempting to produce realizations of 
general paracrystals. In this paper we explore this 
relationship by extending the binary growth-disorder 
models to ones using continuous variables. We thus 
show how lattice realizations may be produced which 
have properties similar to those for the original 
paracrystal concept but which do not suffer from some 
of its drawbacks. 

Within the sections that follow we give examples of 
optical diffraction patterns of lattice realizations which 
were produced in the manner described by Harburn, 
Miller & Welberry (1974) using an Optronics P-1700 
photomation system. The diffraction patterns were 
recorded using a laser diffractometer similar to that 
described in Harburn, Taylor & Welberry (1975). In 
constructing the lattice realizations, Gaussian-dis- 
tributed random numbers were generated using the 
IBM scientific subroutine GA U S S  in conjunction with a 
generator of uniformly distributed pseudo-random 
numbers. This latter involved a procedure in which a 
table of one hundred random numbers was used to 
ensure satisfactory independence. A call to the sub- 
routine R A N D U  was used to select a number from the 
table and a second call to replace it with a newly 
generated one. 

2. Paracrystals and perturbed regular lattices 

The formulation of paracrystals by Hosemann and 
co-workers was in terms of fluctuating vectors which 
represented the unit-cell edges. The 'ideal paracrystar is 
a case for which solutions are available because in 3D 
the lattices consist of three independent 1D chains, the 
3D lattice being formed by completing parallelepipeds 
from the primary vectors. Guinier (1963) doubted the 
validity of the 'ideal paracrystalline model' since it 
seemed unreasonable to expect independent fluctuations 
of interatomic vectors in 3D. Hammersley (1967) in 
discussing 'harnesses' goes even further by saying that 
it is unreasonable to assign independent random 
variables to the edges of an n-dimensional lattice (n _> 
2) since there are many more cell edges than lattice 
points. Because of this, severe conditional dependency 
conditions must be imposed on the vector distributions, 
and it seems more reasonable to work with variables 
representing the lattice points than with the vectors 
between points. This view appears to have been taken 
unanimously by the mathematical probabilists working 
in this field who were mentioned in the Introduction. In 
1D, with lattice points and cell edges being equal in 
number, the two approaches are equally tenable and in 
this section we compare the two by considering a 
simple example. 

(i) Paracrystal 

Suppose we have a simple 1D paracrystal in which 
the only variability is in the length, d, of the primitive 
vector. Suppose also that the lengths of vectors are 
independently but identically and normally distributed, 

( d - a 0 )  
P(d) = K exp ~,~aS- ] ,  (1) 

where a 0 is the mean cell length and trp the standard 
deviation. K is a normalizing constant which will be 
used in subsequent equations with the same meaning 
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but not necessarily the same value. The distribution of 
the combined length of n such successive independent 
vectors is given by 

P,,(d) = K exp 2na~ " (2) 

Equation (2) shows the linear increase of the variance 
with n which is typical of 1D paracrystals. It will be 
noted that (2) is derived from (1) by assuming 
independence of successive vectors and thus is a special 
case of a more general model in which the length of one 
vector is correlated with the length of neighbouring 
vectors. However, since specification of the joint 
probability of two neighbouring vectors including 
correlation would involve the positions of three lattice 
points, we shall not consider this for comparison with 
models specified in terms of only nearest-neighbour 
lattice points. 

with the paracrystal model we require the distribution 
of d i = (x i - x l_ ~ + ao). This is readily shown to be 

[ l (d i -a° )2  ] (6) 
P(di) = Kexp  - 2(7~ 2(1 - r) " 

A property of the model defined by (3) and (5), which is 
in fact a simple Markov chain, is that the correlation 
coefficients between successively distant variables go as 
r ' ;  so (6) can be generalized for comparison with (2) as 

P,(d) = P(x i - xi_ , + nao) 

[ l ( d -  nao) 2 ] 
= K e x p  2(7~ 2 ( 1 - r " )  " (7) 

From (7) we see that for the case of a perturbed regular 
lattice the variance increases with n as the effect of the 
correlation diminishes but reaches a bounded value of 
twice the nearest-neighbour variance. 

(ii) Perturbed regular lattice 

We consider a regular I D lattice of spacing a 0 and 
consider random perturbations x i about each site where 
the x i are longitudinal displacements. Thus the spacing 
d i between the (i - 1)th and ith points is x i - x i_ 1 + ao. 
We consider a simple model in which all x i are 
identically normally distributed and the joint dis- 
tribution of two neighbouring variables is also normal. 
That is, 

p ( x i ) = K e x p  [ x ~ ]  
- -  20---~ ( 3 )  

[ l (x~-t + x Z -  2rxi- lXi)]  
P(xi-l ,  xi) = K exp - 2(7~ (1 - r 2) ' 

(4) 

where (TL is the standard deviation of the displacements 
from the underlying regular lattice points, and r is a 
correlation coefficient, 

(x,_, x,) 
r - -  - -  

Given (3) and (4), the conditional probability of x i 
given x~_ ~ can be determined as 

P ( x i / x i _ l )  - 
P(xi_l,Xi) 

P ( x  i) 

1 (x i - r x  i_1) 2] 
= K e x p  20"2 ( 1 - r  2) ]" (5) 

A realization of the model is produced by using (3) to 
generate the first point and then (5) for successive 
points. The lattice produced will be immediately 
stationary with properties (3) and (4). For comparison 

(iii) Comparison of  the diffraction properties 

The intensity of diffraction is obtained by Fourier 
transformation of the autocorrelation function. This in 
both cases is 

A(d) = Z P,(d). (8) 
n 

In the Appendix we derive the intensity of diffraction 
for a 1D perturbed regular lattice. It is instructive to 
compare the two models for cases where the nearest- 
neighbour distributions (1) and (6) are identical, that is, 
when 

2 = 0.2 2 ( 1  - -  r). ( 9 )  (7 0 

In Fig. 1 we plot the first l l  terms of the auto- 
correlation function for a value of % = 0.1789a 0. In 

(a) 

(b) 

(c) 
Fig. I. Plots of the first I I terms of the autocorrelation function 

A (d) given by (a) equation (2) for the paracrystal and (b) and (c) 
equation (7) for the perturbed regular lattice. In all three the 
distribution of the lengths of nearest-neighbour vectors is the 
same. 
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Fig. l (a)  we use (2) for the paracrystal;  for l(b) we use 
(7) with or. = 0 .6% and r = 0.9555; and for l(e) we use 
(7) with 0 L = 0 .2% and r = 0-6. It will be seen that 
while Fig. 1 (c) is distinctly different from 1 (a), Fig. 1 (b) 
is remarkably similar to l(a). With o,  as low as 0.200 
the underlying regular lattice is easily discernible by the 
residual ripple in A(d)  but with 0,  = 0 .6% the 
underlying lattice is virtually undetectable. 

In Fig. 2 we show optical diffraction patterns of 
simulations of these three models. In the diffraction 
masks from which they were produced, each 1D chain 
consisted of only 512 points and to produce a 
reasonably noise-free diffraction pattern many such 
chains were placed on each mask with arbitrary 
positions so that the intensity from each should be 
added to give the total diffracted intensity. It is seen 
that while Figs. 2(a) and (b) are very similar, the sharp 
first-order lattice peak due to the underlying regular 
lattice is clearly still visible in Fig. 2(e). 

For any given nearest-neighbour distribution it is 
always possible to choose o~ large enough that the 
underlying lattice is undetectable and correspondingly 
increase r to maintain the constancy of 0,: 2(1 - r) in 

(9). We can rewrite the exponent denominator in (7) 
using the binomial expansion 

202 2(1 -- r n) = 402 n(1 -- r) I 1 (n -- 1) 
2-----.7-(1 - - r )  

L .  

( n -  1 ) ( n -  2) 
+ (1 - - r )  2 

3~ 

- -  higher terms].  

Neglecting all but the first term in the expansion, we 
may rewrite equation (7) as 

1 (d-na0) ] 
P , , ( d ) = K e x p - - 2 0 2  2-n-O~--r-)]" (10) 

It will be noticed that as r approaches unity for any 
fixed n the neglected terms go to zero so that in this 
limit the general pair distribution functions (2) and (7) 
become equal. The neglected terms vanish when n = 1. 
But when r is fixed they are significant when n is 
sufficiently large; for such values of n, P,,(d) may or 
may not contribute significantly to the diffraction 
patterns. 

To obtain further information on small values of 
1 - r, we consider how successive cell vectors are 
correlated in the perturbed regular lattice. Suppose 
di = xi - x i - r  We wish to find a correlation coefficient 

( d i d i _ , )  
R - -  - -  

Expanding d's  in terms of x's, we find 

(a) (b) (c) 
Fig. 2. Optical diffraction patterns of the 1D lattices whose 

auto-correlation functions are shown in Fig. 1. Note the 
similarity of (a) and (b) and the sharp first-order maximum 
within the diffuse peak in (c). 

( d i d , - - l )  = ( X , " ~ , _ _ l )  + ( X i _ _ l X i _ _ 2 ) - - ( X ,  Xi__2) 

- ( x i _ , )  = 

= --a 2 (1 -- r) 2 

and ( d ~ ) =  2 o 2 ( 1 - r ) ,  

hence R = --½(1 -- r). (11) 

Thus as r approaches unity the correlation coefficient 
between the lengths of neighbouring vectors approaches 
zero. For the example of Figs. l(b) and 2(b) R = 
--0.0222 while for the example of Figs. l(e) and 2(e) 
R = --0.2. In the second case the model is considerably 
different from a paracrystal.  

Although we have made no attempt to make the 
above arguments completely rigorous we have 
demonstrated that the two models, the first using a 
description in terms of variable cell edges and the 
second in terms of variable lattice positions, are 
equivalent in the limit as r approaches unity while 
a 2 x 2(1 - r) remains constant. However, while the 
paracrystal  approach gives a variance that increases 
with n beyond all bounds, the perturbed regular lattice 
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approach gives a variance that is bounded except  in the 
limit of r = 1. For r < 1 the negative correlation R in 
(11) between successive cell vectors provides the 
necessary restraint on the displacements to keep them 
within finite bounds. 

3. Gaussian growth-disorder models 

Growth-disorder models are stochastic models involv- 
ing binary variables in more than 1D which have been 
developed to describe the way in which disorder can be 
introduced into crystals at growth, the two values of the 
variables representing either two different molecular or 
atomic species or two different orientations of the same 
species. Among other things the models enable actual 
realizations of disordered lattices to be produced very 
rapidly by means of a simple algorithm. It has been 
shown, however, that they are only special cases of 
more general Ising models which in fact represent the 
most general form of nearest-neighbour lattice models 
for binary variables, but these cannot be simulated 
directly (but indirectly as they occur as equilibrium 
distributions in certain spatial-temporal processes) and 
very few explicit results are available for them. Despite 
the fact that growth-disorder models give rise to only 
special cases of more general distributions they do still 
allow considerable variation of statistical properties to 
be built into a lattice, and, because of this and the 
extreme ease with which realizations can be produced, 
they continue to be of interest in their own right. 

The most general binary model based on inter- 
actions within the generic unit cell A B C D  (see Fig. 3) is 
an Ising model defined as follows. The probability that 
the lattice has a particular configuration c is 

1 
Pc = --~ exp [ - -Ec /k  T],  

i 5  

where Z is the partition function or normalizing factor 
and E c is the interaction energy (Hamiltonian). 

A B 
Xt- ld- i  Xl_td 

C D 

Xld- 1 Xid 

Fig. 3. The spatial arrangement of the variables. 

E c =  Y xi, j ( n + J l X i _ l , j + J 2 x t ,  j_l  + J 3 X l - l . j - i  
a l l  

sites  

+ J 4 x i _ l . j + l  + K 1X i - l , jX l ,  j - I  

+ K2 x i -  ~. j - ~ x i  - 1. j -t- K 3 X i _ 1, j - 1 X i ,  j - 1 

+ K4 xi  - 1. j xi  - 1. j + 1 + Lxi .  j - 1 x i -  1. j - 1 x i -  1. J), 

(12) 

where xi. j are binary variables which may take values 
+ 1, and H, J, K, L are the energies associated with 
one-, two-, three- and four-body interactions 
respectively. 

Given this definition, which is an example of a Gibbs 
ensemble, we are interested in the marginal distribution 
on the generic unit cell A B C D ,  i.e. the joint probability 
P(xA,  x n, x c, XD). The problem is quite intractable in the 
general case because of the difficulties in determining Z. 
However, a growth-disorder model subset of this Ising 
model exists in which the distribution P ( x  A, x n, x c, x o) 
is factorizable in a way that can be utilized. We may 
always write 

P(XA, XB, XC, X D) 

= P(xA)  P(XB/XA) P ( X c / X  A , x B) P(XD/X A , X B, Xc), 

(13) 

but by imposing the condition 

P(xc /x ,4  , x s )  =_ P(Xc/XA) ,  (14) 

(13) takes the form 

P(XA, XB, Xc, Xo) 

--- P(XA) P ( x n / x  A) P ( x c / X  A ) P ( x o / x  A , x n, Xc). (15) 

With the factorization (15) realizations may be con- 
structed using P(XA) for the first point, P(XB/XA) and 
P ( x c / X  A) for boundary edges and P ( x o / x  A, xB, Xc) for 
all other general points. The product form of (15) 
implies that each of these probabilities can be used 
independently. An attempt to construct a lattice using 
(13) would fail because a point being added has 
simultaneously to satisfy, for example, P ( x c / X  A, xB) 
and P ( x o / x  A, XB, XC) in different cells. The lattice 
distribution obtained by using the factorization (15) will 
be immediately stationary with marginal distributions 
P(XA) for single points, P ( x  A, xn) = P(xA)  P ( x s / x A )  and 
P ( x  A, x c) = P ( x  A) P ( x c / X  a) for pairs of points and 
P ( x  A, x s, x c, x D) for cells formed by four points. For 
further details and proofs see Pickard (1978), Welberry, 
Miller & Pickard (1979) and Pickard (1979). 

Equation (14) represents the minimum constraint 
necessarv on P ( x  A, x 8, x c, x D) for the model to be 
constructed in growth-disorder model fashion. 
However, we shall concern ourselves only with cases 
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for which P ( x A ,  xB, Xc, xn )  is also symmetric to 
reflection in either vertical or horizontal planes. 
Examples of realizations of this symmetric model are to 
be found in Welberry (1977). 

We can develop continuous variable models along 
exactly the same lines as (12)-(15) if xi. j is taken to be 
a continuous rather than a discrete variable, although 
(12) now does not represent the most general form for 
the interaction Hamiltonian. In order to use continuous 
variables we need to find a probability distribution 
P ( x  A, x s,  x c, xn )  which suitably factorizes as (15). A 
type of continuous random variable commonly used in 
the literature is the Gaussian variable and we shall 
proceed using these. 

The most general form having rectangular symmetry, 
for a Gaussian distribution of four variables, is 

P ( x a ,  x s ,  Xc, X n ) =  K e x p - - { [ x ~  + xn 2 + X2c + xZn 

-- 2 r ' ( x  A x n + X c X  n)  

- -  2s' ( x  A x c + x n xD)  

--  2 t ' ( xA  xn + X n X c ) ] / C } ,  (16) 

where r', s', t ' ,  C are simple functions of r, s and t, the 
horizontal, vertical and diagonal correlation 
coefficients. 

We find that in order to factorize this in the form of 
(15) we need to impose t = rs, i.e. the diagonal 
correlation coefficient is the product of the two axial 
correlation coefficients. This is exactly the same 
condition on the correlation coefficients as occurs for 
the binary variable models. Given this restriction the 
various factors of (15) become 

P ( x A ) = K e x p  [ 2t72 j (17) 

P ( x s / x A ) =  K e x p - - ,  

P ( x c / x  A) = K exp -- 

P ( x n / x  A, x B, Xc) = K exp -- 

(xB - r_x~)2 I 
2tr2( 1 -- r E) J (18) 

(x c - sx~) 2 } 
2a2( 1 _ s2 ) (19) 

(XD -- SXB -- rXc + rsxa)2 I 

2a2(1 -- r2)(1 -- s 2) J 
P ( x  A, x n, x c, x o )  = K e x p -  {[x] + xn 2 + x~ + x~ 

- 2 r ( x  A x s  + x c xo )  

-- 2 s ( x  A Xc + x n xo)  

(20) 

+ 2 r s ( x A x  o + XBXc)] 

x [202(1 - r2)(1 - $2)1-1 }. (21) 

Here cr is the standard deviation of the single site 
variable and K as before is a normalizing constant 
which has a different value in each equation. Just as for 
the binary model this Gaussian model has Markov 

chains embedded along every pathway in the lattice 
whose steps along each of the axes are always in the 
same direction. Because of this the correlation field has 
the simple form 

Pmn ~ Flml Slnl° 

We now consider the use of this model for the 
production of paracrystal-like lattices. We can use 
exactly the same arguments as for the 1D case outlined 
in § 2 and all of the results derived there apply equally 
here. Additionally, we need to consider displacements 
in both x and y directions. Each may have different 
correlation fields and values of o. For simplicity, in the 
examples that follow the x and y displacements have the 
same value of o and are mutually independent. 

Fig. 4 illustrates the effect of varying both the 
standard devation, tr, and the correlation coefficients, r 
and s, which in this case have the same value p. Fig. 
4(a) shows optical diffraction patterns for lattices 
having cr = 0.5a 0 and p = 0.95 and 0.99. Note that the 
correlation coefficient, R, between the lengths of 
neighbouring vectors is - 0 . 0 2 5  and -0 .005  for these 
two respectively. Fig. 4(b) shows patterns for lattices 
having tr -- a 0 and the same value of p as in Fig. 4(a). 
Fig. 5 shows small representative portions of the 
diffraction masks from which the patterns in Fig. 4 
were produced. 

p - 0-95 p = 0-99 

(a) o = 0.5ao 

(b) o = a 0 

Fig. 4. Optical diffraction patterns of  Gaussian variable growth- 
disorder models, p is the correlation coefficient between the 
displacements of lattice points which are nearest neighbours, in 
both the x and y directions, and it applies independently to 
displacements in both the x and y directions, a is the standard 
deviation of  the displacement of  lattice points from the 
underlying regular lattice of spacing a 0. 
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Fig. 6 illustrates the effect of having different 
correlation fields for the two displacements. The 
correlation coefficient for displacements transverse to 
the direction of correlation is Pr and for displacements 

p = 0 - 9 5  
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( a )  cr = 0 . 5 a  0 

(b) a = a 0 

Fig. 5. Small representative portions of the optical diffraction 
masks used to obtain the diffraction patterns of Fig. 4. The 
originals contained 512 x 512 points. 
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( b )  PL = 0 . 9 5  ; Pr = 0 . 9 9  

Fig. 6. Optical diffraction patterns of Gaussian variable growth- 
disorder models. Pr and PL are transverse and longitudinal 
correlation coefficients between displacements of nearest-neigh- 
bour lattice points (see text), tr is the standard deviation of the 
displacement of lattice points from the underlying regular lattice 
of spacing a 0. 

in the direction of correlation the correlation coefficient 
is Pr.. Thus for example in Fig. 6(a) the correlation 
coefficient for x displacements is 0-99 in the x direction 
and 0-95 in the y direction and for y displacements the 
correlation values are reversed. That is, in this case, the 
longitudinal correlations are stronger than the 
transverse ones. In Fig. 6(b) the transverse correlations 
are stronger than the longitudinal ones. Fig. 7 shows 
small representative portions of the diffraction masks 
from which the patterns in Fig. 6 were produced. 

4. Generalizations 

It is interesting to conjecture on the results of allowing 
the growth-disorder model formulation to be 
generalized. The restriction on the form of P(xA, xn, Xc, 
x D) given in (16) was necessary in order for the 
distribution to be produced in a growth-disorder model 
fashion. This could have been left in a more general 
form in which the correlations between points adjacent 
in the [11] and [11] directions were more (or less) 
dominant. A model with this as the basic cell 
distribution would give diffraction patterns in which the 
(1,1) and (1, J) maxima were more (or less) dominant 
than in the examples in Figs. 4 and 6. The only way in 
which such distributions could be produced would be 
by an iterative procedure similar to that by which 
realizations of the Ising model may be produced. 

A further generalization could be in the form of the 
interaction energy E c of (12). The possibilities are so 

cr = 0 . 5 a  0 a = a 0 

I̧ :̧iiii.i i̧.!: 

.% i%",: . !!i!{ 

( a )  Pt. = 0 . 9 9 ;  P r = 0 . 9 5  

(b)  & = 0 . 9 5 ;  p r  = 0 . 9 9  

Fig. 7. Small representative portions of the optical diffraction 
masks used to obtain the diffraction patterns of Fig. 6. The 
originals contained 512 x 512 points. 
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numerous that any conjecture seems not to be 
worthwhile. Brook (1964) gives an example of a model 
formulated in a rather different joint probability way 
but involving only nearest-neighbour interactions. 
When this is re-expressed in terms of the type of 
conditional probabilities used in growth-disorder 
models it is seen to involve relationships with more 
distant neighbours. It may be that extensions along 
these lines would be fruitful, but realizations would 
again be produced only with great difficulty. 

The Gaussian variables used are not the only ones to 
which the treatment given in § 3 could be applied, but 
the functional forms for the conditional probabilities 
(18)-(20) would certainly be less convenient and it is 
doubtful whether any significantly different results 
would be obtained. 

The general methods described in § 3 work equally 
well in three (or more) dimensions. 

5. Conclusion 

The ensemble average of this is proportional to 

e x p ( i k l )  ( e x p [ i k ( x  m -- xn)l ) 
! 

where ! = m - n. 
The correlation coefficient between x m and x,  is S = 

r '~' and x,, and x,  are identically distributed as in (3). 
Thus 

( e x p [ i k ( x  m - xn)]) 

= K f ~ e x p [ i k ( x  m - xn)] 

2 2 S x  m Xn ] X m + X n 
x exp 20.2(1_$2 ) + 0.2( 1 _ $ 2  ) d x .  d x  m 

= exp I-(1 - S ) ( k a ) l  

We have demonstrated that lattices having diffraction 
properties very similar to paracrystals may be quite 
readily generated using a model related to crystal 
growth-disorder models. The main difference in their 
properties is that the variance of the length of vectors of 
successively more distant neighbours is bounded for 
our lattices which means that the underlying regular 
lattice is always detectable in principle if not in practice. 
However, the work of Hammersley (1967) on harnesses 
suggests strongly that in 3D the very fact that points 
are indexable necessarily constrains them to lie within a 
finite distance of the correspondingly indexed points of 
an underlying regular lattice. If this is the case it seems 
unreasonable to expect the 3D analogue of the 
unbounded 1D paracrystal to exist. Our model 
approaches the 'ideal paracrystal' model as the 
correlation values tend to unity. 

A P P E N D I X  

We derive the diffraction pattern of a 1D perturbed 
regular lattice defined by equations (3) and (4) in the 
text. 

Suppose for simplicity that the lattice constant a 0 is 
unity so that the nth point is at a position z, = n + x,  
and the mth point at z m = m + x m where x n, x m are 
random values of the displacement. The scattered 
intensity is 

I~ exp [ i k ( n +  x,,)]l 2 

= ~ e x p l i k ( n  + xn)] ~ e x p [ - i k ( m  + Xm)]. 
/1 m 

and the diffracted intensity becomes 

I ( k )  = ~. e x p ( i k l )  exp[-(1 - r'l')(k0.)2l 
! 

I(k) = exp ( - k  2 a 2) ~ exp (a 2 k 2 r t') exp (ikl). 
I 

If I rl < 1 this can be split into two parts, 

I(k)araB~ = exp ( - k  2 a 2) ~ e x p ( i k l )  
l 

and 

l(k)d,rrus e = exp ( - k  2 0.z) 
oo 

x ~ [exp (0  .2 k 2 r ' n ) -  1] exp(ikl) 
/ = - - o o  

= exp ( - k  z 0.2) ~,  (k2 0.2)P oo 
p! Z ret '  exp ( ikl)  

P = I  1 = - o o  

= exp ( - k  2 0.2) 

oo (k  2 0.2)~ 

x Z p! 
P = I  

1 -- r 2p 

1 + r ze -- 2r e cos (k) 

The Bragg intensity consists of peaks of magnitude 
exp ( - k  2 0.z) at positions for which k is a multiple of 2ft. 
For 0. equal to unity (i.e. the same as the cell spacing) 
the intensity of the first-order Bragg peak relative to the 
origin peak is 7 x 10 -~a : 1, while for 0. = 0.5 the ratio is 
5 × 10-~:l .  It is thus virtually undetectable for these 
values of 0.. 

For very small values of 0. for which k40. 4 is 
negligible, terms in the diffuse intensity with P > 1 may 
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be neglected and the familiar formula for short- 
range-order diffuse scattering (see e.g. Guinier, 1963, p. 
269) is obtained. For values of a much greater than this 
many such diffuse curves corresponding to higher 
values of P must be included in the summation. Each of 
these will represent successively broader more diffuse 
peaks as r 2p approaches zero. The factor (k 2 t72)P/P! 
eventually goes to zero as P increases for any tr but for 
values of a ~_ 1 many terms must be included. 
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Abstract 1. Introduction 

Expressions for the probability P(Ro) that a reflexion of 
'true' intensity R will have an observed value R o 
(possibly negative) are obtained for four counting 
modes: fixed-time counting, equal and unequal times 
for total and background; fixed-count timing, equal and 
unequal counts for total and background. The distribu- 
tions have a positive excess and are in general skew, 
though the skewness may be zero for particular choices 
of unequal times (counts). Deviations from the normal 
distribution with the same mean and variance may be 
considerable for IRol ~_ 0 and for IRol large, and may 
possibly be significant in some applications even for 
R o ~_ R. This apparent conflict with the central limit 
theorem is reconciled. 

0567-7394/80/060929-08501.00 

In both single-crystal and powder diffractometry the 
integrated intensity of a reflexion is obtained as the 
difference between a counting rate averaged over a 
region of reciprocal space intended to include the 
reflected intensity, and a counting rate averaged over a 
neighbouring volume of reciprocal space intended to 
include only background. If the intentions are not 
effectively realized there will be a systematic error in 
the measured intensity, but the present concern is not 
with such systematic errors but with statistical fluctua- 
tions in the intensity as observed. Although an intensity 
can never be really negative, it is not uncommon for the 
measured background counting rate to be higher than 
the measured reflexion-plus-background rate, giving an 
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